

Highlights

Scalable architecture in half and full rack 1 U and 3 U versions provides low cost-per-channel across a wide range of channel counts

Small footprint for switching/scanning applications with up to 576 2-wire channels in 1 U

Measurement support for all
thermocouple types, RTDs and
thermistors with built-in cold junction compensation

Scan list architecture, tightly synchronized with internal 6.5 digit DMM, increases test throughput

Analog and digital plug-in modules provide control capability of external devices

Multiple calibration sets yield more accurate data across temperature range (up to eight per module)

LXI Class A communication interface eliminates platform obsolescence and support cost concerns

Tightly synchronized measurements in a distributed architecture using IEEE-1588

Highly deterministic handshaking using the LXI trigger bus

DAC Express "Set Up and Run" software simplifies data acquisition and analysis

Web-based access for monitoring and control of devices, from anywhere in the world, using any web-enabled device

EX1200 Series
 High-Density Switch/Measure and Control Systems

Applications

- General purpose signal switching
- RF signal routing
- Power supply switching
- Temperature monitoring (RTD, thermocouple, thermistor)
- Automotive ECM testing
- Process monitor
- Data logging applications
- Cable/harness testing
- Battery test

Overview

High-Density Switch Subsystem with Scanning

 Measurement and ControlThe EX1200 series is the highest density scanning switch/measure and control subsystem on the market today with the capacity to switch up to 576 channels of voltage or temperature in a single rack U mainframe. Mix and match a variety of modules to build a comprehensive signal switching subsystem that performs data logging, level detection and control.

Optimized Performance and Scalability

The EX1200 series is designed to leverage capital investments in one common hardware and software platform that can be used in development, manufacturing and field service. A compact 1 U design provides granularity to address small channel requirements while a high-density 3 U mainframe can be used in large channel count applications. Multiple EX1200 series mainframes and other VTI instrumentation, such as EX1000 and EX1629 precision temperature and strain devices, can be easily connected with the LXI communications interface to create a highly synchronized, distributed measurement system.

Device Identification over the Web

Open Architecture Solutions The Freedom to Choose

Open Hardware Maximize Performance, Minimize Risk

VTI cofounded LXI*, an industry standard for Ethernet-based test instrumentation, and is also the industry leader in VXI and VME-based switch modules. VTI switching solutions incorporate LXI Class A technology, the superset of the LXI specification that delivers backplane-like performance in the footprint of a box. Why buy "LXI-lite" (Class B or C) products when you
can have it all?

- Distributed switching and measurement systems over LAN
- Synchronized measurement data to IEEE-1588 precision
- Highly deterministic hardware-based triggering using the LXI trigger bus
- Protection against PC bus obsolescence
- Assurance of multi-vendor instrument interoperability
- Scalable solutions that optimize rack space
*LAN eXtensions for Instrumentation

Open Software -

Expedite System Readiness

The most significant investment of any automated test project resides in the system software. VTI's commitment to delivering open architecture solutions extends to software utilities and tools that reduce development time while maximizing the flexibility to choose the application development environment.

- An API that conforms to the industry standard IVI specification
- Transportable front panels that monitor and control instruments from anywhere, on any web-enabled device
- OS independence with drivers that work seamlessly in Linux and Windows
- C++ LabVIEW, LabWindowsTM/CVI, Visual Basic driver support
- Auto-instrument discovery using NI-MAX and Agilent Connection Expert

Scalable "A"- Class Technology

Embedded Web Interface

DAC Express

Powerful Software Options, Designed for Ease of Use

Easy-to-Use Graphical Control

VTI delivers a variety of software utilities and options that reduce the time it takes to begin using the EX1200 family of products. The series is delivered with an embedded web interface that provides virtual monitoring and control of all switches and instruments without the need for third-party software.

Built-in Test Sequencing

A powerful embedded application dedicated to scanning measurement and control is provided. Each measurement channel can be configured independently with pass/fail limits that can be evaluated on the fly. Stimulus and switch settings can be modified as part of the test sequence, and input channels can be measured to verify how they respond to these changes. This robust utility minimizes processor overhead and test execution time.

DAC Express - Set Up and Run

The EX1200 series is supported by the popular DAC Express turnkey software package. The DAC Express intuitive GUI significantly shortens time-consuming test setup and configuration. Test engineers can begin monitoring, recording and analyzing data within minutes.

With DAC Express and an EX1200 mainframe, engineers can design a mixed-signal distributed measurement system that includes voltage, thermocouple, RTD, and digital inputs. A wide range of graphical displays are available to generate customized views of multiple channels simultaneously. DAC Express systems save time and reduce the frustration normally associated with software development efforts.

Flexible Application Programming Options

Every EX1200 series module is delivered with an application programming interface (API) that conforms to industry standard IVI specifications. The IVI drivers can be used directly in the most common application development environments such as LabVIEW, LabWindowsTM/CVI, C++ and Visual Basic. The EX1200 drivers allow a programmer to:

- Achieve faster development time through path-level programming
- Plan routine maintenance by automatically tracking relay closures
- Precisely synchronize distributed measurements through IEEE-1588
- Use the LXI Class A trigger bus for highly deterministic hardware handshaking

Operating System Independence

VTI's innovative approach to driver development provides system developers with true OS independence without sacrificing the convenience that instrument drivers deliver. An IVI-like API can be imported into Linux® and other operating systems. The intuitive APIs simplify programming. Therefore, low-level coding is not required to access the full capability of the instrument.

EX1200 Series Quick Reference

Mainframes

Model	Slots	DMM	Size	LAN Specification	Backplane Extension Lines	
EX1266	6	6.5 digits	Full rack, 1 U	LXI Class A 10/100T	5	
EX1206	6	No	Full rack, 1U	LXI Class A 10/100T	5	
EX1262	2	6.5 digits	Half rack, 1U	LXI Class A 10/100T	5	
EX1202	2	No	Half rack, 1U	LXI Class A 10/100T	5	
EX1208	16	No	Full rack, 3U	LXI Class A 10/100T	5	
EX1268	16	6.5 digits	Full rack, 3U	LXI Class A 10/100T	5	
EX1269	6-M/8	6.5 digits	Full rack, 3U	LXI Class A 10/100T	24 Matrix/5 DMM	
Switches						
Model	Channels	Configuration	Switched V/A	Switched Power (max)	Bandwidth -3dB	
EX1200-2001	20	SPST (Form A)	$125 \mathrm{~V} / 16 \mathrm{~A}$	480 W DC, 2000 VA	10 MHz	
EX1200-2002	12	SPDT (Form C)	$125 \mathrm{~V} / 16 \mathrm{~A}$	480 W DC, 2000 VA	10 MHz	
EX1200-2007A	24	2/4-wire multiplexer	$1000 \mathrm{~V} / 1 \mathrm{~A}$	25 W DC	15 MHz	
EX1200-3048	48	2/4-wire multiplexer	$300 \mathrm{~V} / 2 \mathrm{~A}$	60 W DC, 125 VA	40 MHz	
EX1200-3048S	48	2/4-wire FET multiplexer	$250 \mathrm{~V} / 0.2 \mathrm{~A}$	25 W DC, 25 VA	10 MHz	
EX1200-3072	72	2/4-wire multiplexer	$300 \mathrm{~V} / 2 \mathrm{~A}$	60 W DC, 125 VA	40 MHz	
EX1200-3096	96	2/4-wire multiplexer	$100 \mathrm{~V} / 1 \mathrm{~A}$	30 W DC	10 MHz	
EX1200-3164	64	(16) 1×4 2-wire multiplexer	$300 \mathrm{~V} / 2 \mathrm{~A}$	60 W DC, 125 VA	50 MHz	
EX1200-4003	128 xpoint	Dual 4×162-wire matrix	$250 \mathrm{~V} / 2 \mathrm{~A}$	60 W DC, 62.5 VA	45 MHz	
EX1200-4128	512 xpoint	4×128 1-wire matrix	$150 \mathrm{~V} / 0.5 \mathrm{~A}$	10 W DC/AC	10 MHz	
EX1200-5001	80	SPST (Form A)	$300 \mathrm{~V} / 2 \mathrm{~A}$	60 W DC, 125 VA	10 MHz	
EX1200-5002	30	SPDT (Form C)	$300 \mathrm{~V} / 2 \mathrm{~A}$	60 W DC, 125 VA	30 MHz	
EX1200-5001	40	SPST (Form A)	$300 \mathrm{~V} / 2 \mathrm{~A}$	60 W DC, 125 VA	10 MHz	
EX1200-5007	12	SPDT (Form C)	$300 \mathrm{~V} / 2 \mathrm{~A}$	60 W DC, 125 VA	30 MHz	
EX1200-6101	10	SP4T coaxial trees	$100 \mathrm{~V} / 0.5 \mathrm{~A}$	10 W	1.3 GHz	
EX1200-6111	5	SP4T coaxial trees	$100 \mathrm{~V} / 0.5 \mathrm{~A}$	10 W	1.3 GHz	
EX1200-6216	2	Dual 1×16 coaxial trees	$100 \mathrm{~V} / 0.5 \mathrm{~A}$	10 W	1 GHz	
EX1200-6301	4	SP4T coaxial trees	$30 \mathrm{~V} / 0.5 \mathrm{~A}$	10 W	3 GHz	
Digital I/O						
Model	Channels	Sample Rate	Memory	Type	Iout max (sink)	Vout max
EX1200-7500	(8) 8-bit ports	2 MHz	2 MB	Open collector/TTL	< 300 mA	60 V
Comparator/Edge Detector						
Model	Channels	Voltage Range	Min Pulse Width	Memory		
EX1200-7416	16 DE or SE	$\pm 10 / 100 \mathrm{~V}$	1 us	1 M event		
Analog Output/Control						
Model	Channels	Voltage Range	Current Range	Max Isolation	Sample Rate	Memory
EX1200-3604	$4 \mathrm{~V} / \mathrm{l}, 16$-bit	$\pm 0.1 / 1 / 10 / 20 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$	100 V DC/100 V AC peak	$400 \mathrm{kSa} / \mathrm{s}$	1 Msample
EX1200-3608	$8 \mathrm{~V} / \mathrm{l}, 16$-bit	$\pm 0.1 / 1 / 10 / 20 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$	100 V DC/100 V AC peak	$400 \mathrm{kSa} / \mathrm{s}$	1 Msample

Terminal Blocks (with built-in CJC)

Model	Connector Compatibility
EX1200-TB104	104-pin HD D-sub
EX1200-TB160	160-pin DIN
EX1200-TB200	200-pin HD SCSI
EX1200-TBR	6-slot Terminal Block Receiver

[^0]
EX1200 Series Specifications

System Specifications

Physical Dimensions

EX1206/EX1266
EX1208/EX1268/EX1269
Operating temperature
Operating altitude
Operating humidity

Storage temperature
Storage altitude
Storage humidity
Shock and vibration
Warm-Up Time
Line Frequency
LXI Specifications
Compliance
Clock
Clock Oscillator Accuracy
Synchronization Accuracy
Timestamp Accuracy
Timestamp Resolution
IEEE 1588-Based Trigger Timing
Alarm Trigger Time Accuracy
Alarm Time to Trigger Delay
Receive LAN[0-7] Event
Trigger Time Accuracy
Time to Trigger Delay
Future Timestamp
Past/Zero Timestamp

LXI Trigger Bus

Time to Trigger Delay
DIO Bus
Time to Trigger Delay 57 ns typical

Software

Operating Systems
API/Driver Support

Windows, Linux®
1 rack U mainframe ($17{ }^{1 ⁄ 4} 4^{\prime \prime} \mathrm{D}, 171 / 4^{" W} \mathrm{~W}, 1.75^{\prime \prime} \mathrm{H}$)

$0^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}$
10,000 ft (3,000 m) maximum
$5 \%-95 \%$ non-condensing @ $0^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}, 5 \%-75 \%$ non-condensing @ $30^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}$,
$5 \%-45 \%$ non-condensing @ $40^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$ (per 3.8.2 of MIL-PRF-28800F Class 3)
$10 \%-90 \%$ non-condensing @ $60^{\circ} \mathrm{C}$ with conformal coating
$-40^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
$15,000 \mathrm{ft}(4,500 \mathrm{~m})$ maximum
5\% - 95\%, non-condensing
Per 3.8.5 of MIL-PRF-28800F, Class 3
30 min
Manually set to 50 Hz or 60 Hz (default)

LXI Class A
+/- 50 ppm
Synchronized when <+/- 200 us of the 1588 master clock
As good as time synchronization, down to 50 ns
25 ns

As good as time synchronization, down to 50 ns
50 ns
As good as time synchronization, down to 50 ns
50 ns typical
1 ms maximum

55 ns typical

IVI (C/COM), LabVIEW, LabWindowsTT/CVI, VEE, Visual Basic, C/C++, .NET

Ordering Information (Mainframes)

2-slot, 1 U mainframe (half rack)
6 -slot, 1 U mainframe
16-slot, 3 U mainframe
2-slot, 1 U mainframe, plus 6.5 Digit DMM (half rack)
6 -slot, 1 U mainframe, plus 6.5 Digit DMM
16-slot, 3 U mainframe, plus 6.5 Digit DMM
8 -slot standard, 6 -slot matrix, 3 U Mainframe, plus 6.5 digit DMM
Rack ear kit with rear support bracket, full rack width 1U (EX1206/EX1266)
Rack ear kit with rear support bracket, full rack width, 3U (EX1208/EX1268/EX1269)
Rack ear kit with rear support bracket, half rack width, 1 (EX1202/EX1262)
Rack ear kit with rear support bracket, dual half rack width, 1 (EX1202/EX1262)
Tabletop guard kit
Blanking Panel

Measurement Functions	DC voltage, AC voltage (true rms), DC current, AC current (true rms), 2-wire ohms, 4-wire ohms, temperature and frequency
Warm-Up Time	30 min
Memory	65,536 readings (with timestamp), old data overwritten by new data if not read. Timestamp is relative to a trigger event with microsecond resolution.
Saved States	8 user configuration states in non-volatile memory
Measurement Integration Time	Programmable as multiple of power line cycle (PLC) from 0.01 PLC to 100 PLC or as time from 167μ s to 2 s
Line Frequency	Manually set to 50 Hz or 60 Hz (default)
Limits	Programmable lower and upper limit values
Reading Buffer Statistics	Count, Minimum, Maximum, Average
Trigger	
Type	LXIsync, Automatic or programmable delay
Resolution	$1 \mu \mathrm{~s}$ resolution from 0 s to 4,294 s
Source	Internal (register-based) or external (front panel or any of 4 BIB trigger lines)
Trigger Count	Programmable 1 to 4,294,967,295
Sample Count	Programmable 1 to 4,294,967,295
Maximum Non-Destructive Inputs	
Signal	CAT-I Inputs Limit
HI or Sense HI to LO	450 V
HI or Sense HI to Guard	450 V
HI or Sense HI to Chassis (GND)	450 V
LO or Sense LO to Guard	450 V
LO or Sense LO to Chassis (GND)	450 V
Guard to Chassis (GND)	450 V
Maximum common mode voltage	$\pm 450 \mathrm{~V}$
Using external probe	1.5 kV
Current input protection	$3 \mathrm{~A}, 250 \mathrm{~V}$ fuse, externally accessible
NOTE: All accuracy specifications on the following pages are based on 30 minute warm-up and $61 / 2$ digits with trigger auto-delay, range auto-delay, and auto-zero ON, max operating temperature of $50^{\circ} \mathrm{C}$.	
Resolution	
PLC Multiple (50 Hz OR 60 Hz)	
10	$61 / 2$ digits
1.0	$51 / 2$ digits
0.1	$41 / 2$ digits
0.01	4 digits

RANGE	RESOLUTION	INPUT RESISTANCE*	$\begin{aligned} & 1 \text { YEAR ACCURACY } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{aligned}$		TEMPERATURE COEFFICIENT$0^{\circ} \mathrm{C}-18^{\circ} \mathrm{C} ; 28^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$	
			\% READING	\% RANGE	\% READING/ ${ }^{\circ} \mathbf{C}$	\% RANGE $/{ }^{\circ} \mathrm{C}$
100 mV	$0.1 \mu \mathrm{~V}$	$>1 \mathrm{G} \Omega, 10 \mathrm{M} \Omega$	0.0050	0.0050	0.0005	0.0005
1 V	$1 \mu \mathrm{~V}$	$>1 \mathrm{G} \Omega, 10 \mathrm{M} \Omega$	0.0050	0.0010	0.0005	0.0001
10 V	$10 \mu \mathrm{~V}$	$>1 \mathrm{G} \Omega, 10 \mathrm{M} \Omega$	0.0050	0.0010	0.0005	0.0001
100 V	$100 \mu \mathrm{~V}$	$10 \mathrm{M} \Omega$	0.0050	0.0010	0.0005	0.0001
300 V	$100 \mu \mathrm{~V}$	$10 \mathrm{M} \Omega$	0.0050	0.0030	0.0005	0.0003

* Selectable input resistance to support external high-voltage probe, $10.0 \mathrm{M} \Omega \pm 1 \%$.

Over-range: 20\% of range, except 300 V range
Normal Mode Rejection Ratio (NMRR) at power line frequency $\pm 0.1 \%$: 60 dB for 1 PLC, 10 PLC, 100 PLC.
Common Mode Rejection Ratio (CMRR): 140 dB at DC.
Input bias current: < 100 pA typical at $23^{\circ} \mathrm{C}$.

DC Current

RANGE	RESOLUTION	MAXIMUM INPUT VOLTAGE	1 YEAR ACCURACY $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$		TEMPERATURE COEFFICIENT$0^{\circ} \mathrm{C}-18^{\circ} \mathrm{C} ; 28^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$	
			\% READING	\% RANGE	\% READING $/{ }^{\circ} \mathbf{C}$	\% RANGE $/{ }^{\circ} \mathrm{C}$
1 mA	1 nA	$<0.1 \mathrm{~V}$	0.0700	0.0200	0.0050	0.0020
10 mA	10 nA	$<0.1 \mathrm{~V}$	0.0700	0.0200	0.0050	0.0020
100 mA	100 nA	<0.6 V	0.0700	0.0050	0.0060	0.0005
1 A	$1 \mu \mathrm{~A}$	$<1.0 \mathrm{~V}$	0.1500	0.0100	0.0050	0.0010
3 A	$1 \mu \mathrm{~A}$	$<2.0 \mathrm{~V}$	0.1500	0.0300	0.0050	0.0020

* Add 0.15% of reading above 2 A.

Over-range: 20% of range, except 3 A range

2-Wire, 4-Wire Resistance*

RANGE	RESOLUTION	TEST CURRENTS**	$\begin{gathered} 1 \text { YEAR ACCURACY } \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{gathered}$		TEMPERATURE COEFFICIENT$0^{\circ} \mathrm{C}-18^{\circ} \mathrm{C} ; 28^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$		
			\% READING	\% RANGE	\% READING/ ${ }^{\circ} \mathrm{C}$	\% RANGE $/{ }^{\circ} \mathrm{C}$	
100Ω	100 u Ω	1 mA	0.0100	0.0040	0.0006	0.0005	
$1 \mathrm{k} \Omega$	$1 \mathrm{~m} \Omega$	1 mA	0.0100	0.0010	0.0006	0.0001	
$10 \mathrm{k} \Omega$	10 ms	$100 \mu \mathrm{~A}, 500 \mu \mathrm{~A}$	0.0100	0.0010	0.0006	0.0001	
$100 \mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	$10 \mu \mathrm{~A}, 50 \mu \mathrm{~A}$	0.0100	0.0010	0.0006	0.0001	
$1 \mathrm{M} \Omega$	1Ω	$5 \mu \mathrm{~A}$	0.0100	0.0010	0.0010	0.0002	
$10 \mathrm{M} \Omega$	10Ω	$700 \mathrm{nA} \\| 10 \mathrm{M} \Omega$	0.0540	0.0010	0.0030	0.0004	
***30 M Ω	100Ω	$700 \mathrm{nA} \\| 10 \mathrm{M} \Omega$	***0.1300	${ }^{* * *} 0.0100$	0.1500	0.0002	
$100 \mathrm{M} \Omega$	100Ω	$700 \mathrm{nA} \\| 10 \mathrm{M} \Omega$	0.8000	0.0100	0.1500	0.0002	

* 4-wire specified for $100 \Omega-100 \mathrm{k} \Omega$ ranges only
** Selectable test current on $10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ ranges
*** Applies to $100 \mathrm{M} \Omega$ range up to $30 \mathrm{M} \Omega$ readings only
Open circuit test voltage: 10 V
Maximum 4-wire lead resistance 10% of range per lead for 100Ω range and $1 \mathrm{k} \Omega$ range. $1 \mathrm{k} \Omega$ per lead for all other ranges.
Percentage of range specification for the $30 \mathrm{M} \Omega$ is based on the use of the $100 \mathrm{M} \Omega$ circuitry.

System Speed For DC Measurements*

EVENT

Function change	$9 / \mathrm{s}$
Range change	$9 / \mathrm{s}$
Auto-range time	$<30 \mathrm{~ms}$
Max. reading rate	$1000 / \mathrm{s}$ (see DC Voltage Reading Rate tables on next page)
Max. internal trigger rate	$1000 / \mathrm{s}$
Max. ext. trig. rate to memory	$1000 / \mathrm{s}$

Rate	READINGS/SECOND $[60 ~ H Z ~(50 ~ H Z)] ~$	DIGITS	NMRR	CMRR
10 PLC	$5.9(4.9)$	$61 / 2$	60 dB	140 dB
1 PLC	$59(49)$	$51 / 2$	60 dB	140 dB
0.1 PLC	$599(499)$	$41 / 2$	-	80 dB
0.01 PLC	$1000(1000)$	4	--	80 dB
* Auto-zero off, trigger and sample delay $=0$				

AC Voltage

RANGE	RESOLUTION	FREQUENCY RANGE	1 YEAR ACCURACY$23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$		TEMPERATURE COEFFICIENT$0^{\circ} \mathrm{C}-18^{\circ} \mathrm{C} ; 28^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$	
			\% READING	\% RANGE	\% READING $/{ }^{\circ} \mathbf{C}$	\% RANGE $/{ }^{\circ} \mathrm{C}$
100 mV	100 nV	$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	1.0000	0.0400	0.1000	0.0040
		$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	0.3500	0.0400	0.0350	0.0040
		$10 \mathrm{~Hz}-20 \mathrm{kHz} 0$. 0600	0.0400	0.0050	0.0040
		$20 \mathrm{kHz}-50 \mathrm{kHz}$	0.1200	0.0500	0.0110	0.0050
		$50 \mathrm{kHz}-100 \mathrm{kHz}$	0.6000	0.0800	0.0600	0.0080
		$100 \mathrm{kHz}-300 \mathrm{kHz}$	5.0000	0.5000	0.0200	0.0200
1 V10 V$* 100 \mathrm{~V}$		$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	1.0000	0.0300	0.1000	0.0030
	$1 \mu \mathrm{~V}$	$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	0.3500	0.0300	0.0350	0.0030
	$10 \mu \mathrm{~V}$	$10 \mathrm{~Hz}-20 \mathrm{kHz}$	0.0600	0.0300	0.0050	0.0030
	$100 \mu \mathrm{~V}$	$20 \mathrm{kHz}-50 \mathrm{kHz}$	0.1200	0.0500	0.0110	0.0050
		*50 kHz-100 kHz	0.6000	0.0800	0.0600	0.0080
		*100 kHz-300 kHz	5.0000	0.5000	0.2000	0.0200
*300 V	$100 \mu \mathrm{~V}$	$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	1.0000	0.0900	0.1000	0.0030
		$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	0.3500	0.0900	0.0350	0.0030
		$10 \mathrm{~Hz}-20 \mathrm{kHz}$	0.0600	0.0900	0.0050	0.0030
		$20 \mathrm{kHz}-50 \mathrm{kHz}$	0.1200	0.1500	0.0110	0.0050
		*50 kHz-100 kHz	0.6000	0.2400	0.0600	0.0080
		*100 kHz - 300 kHz	5.0000	1.5000	0.2000	0.0200

Specifications are for sine wave input >5\% of range for 100 mV - 100 V ranges, $>15 \%$ for 300 V range, with slow ac filter selected.

* Volt-hertz product is limited to $1.5 \times 10^{7} \mathrm{~V} \bullet \mathrm{~Hz}$.

Over-range: 20% beyond range, except 300 V range.
Input Impedance: $1 \mathrm{M} \Omega \pm 2 \%$ in parallel with $<100 \mathrm{pF}$.

AC Voltage Reading Rate

FILTER SETTING

Slow *	3 readings/second
Medium *	20 readings/second
Fast	Auto-zero, delay, line frequency, and integration time dependent. Refer to DC voltage reading rates.

[^1]AC Current

RANGE	RESOLUTION	FREQUENCY RANGE	1 YEAR ACCURACY$23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$		TEMPERATURE COEFFICIENT$0^{\circ} \mathrm{C}-18^{\circ} \mathrm{C} ; 28^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$	
			\% READING	\% RANGE	\% READING/ ${ }^{\circ} \mathrm{C}$	\% RANGE/ ${ }^{\circ} \mathrm{C}$
10 mA	100 nA	$20 \mathrm{~Hz}-45 \mathrm{~Hz}$	2.0000	0.2000	0.1000	0.0060
		$45 \mathrm{~Hz}-100 \mathrm{~Hz}$	2.0000	0.2000	0.0350	0.0060
		${ }^{* *} 100 \mathrm{~Hz}-20 \mathrm{kHz}$	2.0000	0.2000	0.0150	0.0060
100 mA	100 nA	$20 \mathrm{~Hz}-45 \mathrm{~Hz}$	1.0000	0.0600	0.1000	0.0060
		$45 \mathrm{~Hz}-100 \mathrm{~Hz}$	0.4000	0.0600	0.0350	0.0060
		${ }^{* *} 100 \mathrm{~Hz}-20 \mathrm{kHz}$	0.4500	0.0600	0.0150	0.0060
1 A	$1 \mu \mathrm{~A}$	$20 \mathrm{~Hz}-45 \mathrm{~Hz}$	0.3500	0.0400	0.0350	0.0060
		** $45 \mathrm{~Hz}-20 \mathrm{kHz}$	0.1500	0.0400	0.0150	0.0060
		**20 kHz-50 kHz	0.4000	0.0400	0.0150	0.0060
*3 A	$1 \mu \mathrm{~A}$	$20 \mathrm{~Hz}-45 \mathrm{~Hz}$	0.9500	0.0600	0.0350	0.0060
		** $45 \mathrm{~Hz}-20 \mathrm{kHz}$	0.7500	0.0600	0.0150	0.0060
		**20 kHz-50 kHz	0.7800	0.0600	0.1500	0.0600

Specifications are for sine wave input $>5 \%$, with slow AC filter.

* Valid to $2 \mathrm{~A}, 20 \mathrm{~Hz}$ to 5 kHz ; add 0.25% of reading above 2 A .
** Specifications above 5 kHz are typical.

Burden Voltage

AC CURRENT RANGE

10 mA	$<0.1 \mathrm{~V} \mathrm{rms}$
100 mA	$<0.6 \mathrm{Vrms}$
1 A	$<1 \mathrm{Vrms}$
3 A	$<2 \mathrm{Vrms}$

Over-range: 20\% of range, except 3 A range

Crest Factor*

ADDITIONAL ERROR (\% READING)

$1-2$	0.05%
$2-3$	0.15%
$3-4$	0.30%
$4-5$	0.40%
* For non-sine wave inputs	

AC Filter Bandwidth

FILTER TYPE

Slow	$3 \mathrm{~Hz}-300 \mathrm{kHz}$
Medium	$20 \mathrm{~Hz}-300 \mathrm{kHz}$
Fast	$200 \mathrm{~Hz}-300 \mathrm{kHz}$

Additional Low Frequency Filter Errors*

FREQUENCY	SLOW AC FILTER	MEDIUM AC FILTER	FAST AC FILTER
$10 \mathrm{~Hz}-20 \mathrm{~Hz}$	0.0000	0.7400	N/A
$20 \mathrm{~Hz}-40 \mathrm{~Hz}$	0.0000	0.2200	N/A
$40 \mathrm{~Hz}-100 \mathrm{~Hz}$	0.0000	0.0600	0.7300
$100 \mathrm{~Hz}-200 \mathrm{~Hz}$	0.0000	0.0100	0.2200
$200 \mathrm{~Hz}-1 \mathrm{kHz}$	0.0000	0.0000	0.1800
$>1 \mathrm{kHz}$	0.0000	0.0000	0.0000
* AC voltage and AC current (\%Reading)			
Additional Low Frequency Sampling Errors*			
FREQUENCY	61⁄22 DIGIT RESOLUTION	5½ DIGIT RESOLUTION	4½ DIGIT RESOLUTION
$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	0.0000	0.1200	0.1200
$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	0.0000	0.1700	0.1700
$10 \mathrm{~Hz}-40 \mathrm{~Hz}$	0.0000	0.2000	0.2000
$40 \mathrm{~Hz}-100 \mathrm{~Hz}$	0.0000	0.0600	0.2100
$100 \mathrm{~Hz}-300 \mathrm{~Hz}$	0.0000	0.0300	0.2100
$300 \mathrm{~Hz}-1 \mathrm{kHz}$	0.0000	0.0100	0.0700
$>1 \mathrm{kHz}$	0.0000	0.0000	0.0002
* AC voltage and AC current (\%Reading)			
Front Panel Connector			
TYPE			

[^2]
VTI

Instruments

EX1200-2001

20 Channel 16 A Form A (SPST) Switch EX1200-2002
12 Channel 16 A Form C (SPDT) Switch

EX1200-2002

Overview

The EX1200-2001 and EX1200-2002 are the only switch modules in their class with the ability to switch up to 16 As. Some applications include: AC line power switching, switching of DC or AC power supplies, controlling or driving relays for industrial machines (robotics, numerical control machines), automotive engine control, and solenoid switching.

Since these modules typically switch power to the UUT or interface, the digital input lines on the EX1200 series mainframes support the ability to force all relays automatically to their normally open state if a fault condition occurs. This approach instantly removes all power to the UUT or interface. These modules can be automatically configured in the setup phase at the beginning of each scan step to facilitate test sequencing and control.

EX1200-2001

EX1200-2002

Specifications

Number of Channels

Relay Type

Maximum Switching Voltage
Maximum Switching Current
Maximum Switching Power
Path Resistance
Insulation Resistance
Maximum Thermal Offset
Per Channel (HI-LO)
Capacitance
Open Channel
Channel-Mainframe
Bandwidth (-3 dB)
Insertion Loss
100 kHz
1 MHz
10 MHz
Crosstalk
$100 \mathrm{kHz} \quad<-75 \mathrm{~dB}$
$1 \mathrm{MHz} \quad<-50 \mathrm{~dB}$
$10 \mathrm{MHz} \quad<-40 \mathrm{~dB}$
Rated Switch Operations
Mechanical 5×10^{7}
Electrical 1×10^{5} at full load
Switching Time
Connector Type

20 SPST (2001)
12 SPDT (2002)
Electromechanical, Fail-safe
250 V AC 125 V DC
16 A
480 W DC, 2000 VA per channel
$<100 \mathrm{~m} \Omega$
$>1 \times 10^{9} \Omega$
$<50 \mu \mathrm{~V}$
< 20 pF
$<20 \mathrm{pF}$
10 MHz typical
$<0.2 \mathrm{~dB}$
$<0.5 \mathrm{~dB}$
$<1.0 \mathrm{~dB}$
$<-75 \mathrm{~dB}$
$<10 \mathrm{~ms}$
41-pin Positronic

Ordering Information

EX1200-2001
EX1200-2002
70-0190-001
46-0012-000
46-0014-000
46-0015-000
27-0087-000
27-0087-041

20 channel, 16 A Form A (SPST) switch
12 channel, 16 A Form C (SPDT) switch
Connector kit (includes 1 each connector and backshell plus 44 pins)
Crimp tool and turret head
Insertion tool, pin extractor, size 16 contact, A M series
Extraction tool, contact insertion, Positronic power/coaxial
Contact, female, crimp, power connector, 14-16 GA (Order qty: 44 per board)
Connector, power, female with backshell, insulated, 41 PLC

Instruments

EX1200-2007A
 48 channel 1000 V Multiplexer

Overview

The EX1200-2007A is designed for scanning multiple high-voltage points to a common bus in either 1- or 2- wire configurations. It consists of two individual (1×12) 2-wire multiplexers, or dual $(1 \times 24) 1$-wire multiplexers that can be interconnected under program control (via bussing relays) to configure larger multiplexers as required. This reduces the need for external cabling and helps reduce unterminated stub effects.

When switching high voltages, the need for signal shielding becomes critical. The EX1200-2007A has been designed to include large shield planes that reduce crosstalk and voltage spikes to adjacent channels.

A fail-safe interrupt line is provided on the front panel that can be used when switching high-voltage source/measure units, or power supplies. This interrupt can be programmed to open up all relays automatically in the event of a fault condition and, thus instantly removing power from the user interface.

Up to 144 2-wire channels can be accommodated in a single EX1200 series mainframe for maximum density, or combined with other EX1200 series modules to create a flexible system switch.

EX1200-2007A

Specifications

Channel Count	$(1 \times 24) 2$-wire, Dual $(1 \times 12) 2$-wire, or Dual $(1 \times 24) 1$-wire
Relay Type	Reed
Maximum Switching Voltage	1000 V DC
Maximum Switching Current	1 A
Maximum Carry Current	2 A
Maximum Switching Power	25 W dc
Path Resistance	$<1 \Omega$
Insulation Resistance	$>1 \times 10^{7} \Omega$
Bandwidth $(-3 \mathrm{~dB})$	15 MHz typical
Rated Switch Operations	
Mechanical	1×10^{8}
Electrical	1×10^{6} at full load
Switching Time	$<1 \mathrm{~ms}$
Front Panel Connector	$160-\mathrm{pin}$ DIN $(1 / 2$ populated $)$

Ordering Information

EX1200-2007A
52-0109-000
46-0010-000
46-0011-000
70-0363-504
70-0363-503
27-0088-160

48 channel 1000 V multiplexer
100 crimp pins
Crimp tool
Extraction tool
Strain relief bracket kit (includes connector - recommended accessory)
Strain relief bracket kit (no connector)
Mating connector

DIN connectors and tooling

Instruments

EX1200-3048

48 channel 300 V/ 2 A Multiplexer

Features

High-density 300 V/2 A multiplexing scanning (up to 288 two-wire channels in 1U footprint)

Configure as 2 or 4-wire multiplexers under program control

Internal capacitive discharge relays keep high voltages from disturbing sensitive measurement points

Supports thermocouple, RTD and
thermistor measurements
Optional screw-terminal junction
box includes built-in cold-junction compensation

Direct measurement of current, up to 3 As

Direct routing to DMM through internal analog measurement bus simplifies field wiring

Overview

The EX1200-3048 high-density multiplexer modules is designed for scanning of multiple points to a common bus, in either 2- or 4-wire configurations, either synchronously with the EX1200 system DMM scan function, or asynchronously as a system switch to other devices through LXI LAN messages or the hardware trigger bus. Up to 288 two-wire (or 144 four-wire) channels can be accommodated in a single EX1200 full rack mainframe for maximum density, or mixed and matched with other EX1200 plug-ins for flexibility. Applications include cable harness testing, temperature/voltage monitoring, PCB testing, and those in which multiple points need to be switched to a common resource. All relays also have individual control, and each path allows for hot switching of up to 300 V and 2 A (60 W dc max). Two dedicated channels the capability to directly measure current up to 3 As.

The EX1200-3048 consists of dual (1x24) 2-wire multiplexer banks. Each bank can be interconnected within a module under program control (via bussing relays) to form a 1×48 multiplexer. The EX1200 analog bus can be used to configure larger multiplexers which eliminates external wiring and helps reduce unterminated stub effects.

Internal residual voltage discharge relays can be enabled to momentarily short out the measurement path when changing from one input channel to the next. This dissipates any voltage held by the wiring and instrument input capacitance. These relays protect sensitive devices, such as CMOS circuits, from residual voltages caused by previous high-voltage measurements. This feature can also be disabled in low-voltage applications where maximum throughput speed is important.

An optional terminal block provides screw termination points for external field wiring. This terminal block also includes cold junction compensation reference for more precise temperature measurements.

Specifications

Channel Count

Relay Type
Maximum Switching Voltage
Maximum Switching Current
Maximum Switching Power
Path Resistance
Insulation Resistance
Maximum Thermal Offset
Per Channel (HI-LO)
Capacitance
Open Channel $<50 \mathrm{pF}$
Channel-Mainframe $<20 \mathrm{pF}$
High-Low
Bandwidth (-3 dB)
Crosstalk (bank 1 to bank 2)
1 MHz
10 MHz
Rated Switch Operations
Mechanical
Electrical
Switching Time
Front Panel Connector
2 A
< $500 \mathrm{~m} \Omega$
$>1 \times 10^{9} \Omega$
$<3 \mu \mathrm{~V}$
$<50 \mathrm{pF}$
$<20 \mathrm{pF}$
$<50 \mathrm{pF}$
$<-90 \mathrm{~dB}$
$<-60 \mathrm{~dB}$
$<3 \mathrm{~ms}$
(1×48) 2-wire, Dual (1×24)-wire, or $(1 \times 24) 4$-wire plus 2 Current @ 3 A
Electromechanical, Fail-safe
300 V AC, 300 V DC

60 W dc, 125 VA

40 MHz typical
1×10^{8} (no load)
$1 \times 10^{5} @ 50 \mathrm{~V} \mathrm{dc}, 0.1 \mathrm{~A}$ resistive or $10 \mathrm{~V} \mathrm{dc}, 10 \mathrm{~mA}$ (resistive)

104-pin HD D-sub

Ordering Information

EX1200-3048
EX1200-TB104
27-0389-104
27-0390-104
70-0297-001
70-0363-501
70-0367-001

48 channel, $300 \mathrm{~V} / 2 \mathrm{~A}$ multiplexer
Terminal block, 104-pin HD D-sub connector with internal CJC reference 104-pin HD D-sub mating connector with hood and pins, fixed contacts (no crimp tool required)
104-pin HD D-sub mating connector, backshell and pins, crimp style
Crimp tooling, includes handle and positioner, 22 AWG
104-pin HD D-sub mating connector and backshell, with 3 ft unterminated 22 AWG wire EX1200-TB104, differential module

Instruments

EX1200-3048S
 48 Channel FET Multiplexer

Overview

The EX1200-3048S is a high-density FET multiplexer module designed for scanning of multiple points to a common bus, in either 2- or 4-wire configurations, either synchronously with the EX1200 system DMM scan function, or asynchronously as a system switch to other devices through LXI LAN messages or the hardware trigger bus. The solid-state design delivers maximum switching speed and near infinite life. Up to 288 two-wire (or 144 four-wire) channels can be accommodated in a single EX1200 full rack mainframe for maximum density, or mixed and matched with other EX1200 plug-ins for flexibility. Typical applications include temperature and voltage data acquisition and datalogging at up to 1000 scans per second.

The EX1200-3048S consists of dual (1x24) 2-wire multiplexer banks. Each bank can be interconnected within a module under program control (via bussing relays) and across modules via the EX1200 analog bus to configure larger multiplexers as required. This eliminates external wiring and helps reduce unterminated stubs.

Internal residual voltage discharge relays can be enabled to momentarily short out the measurement path when changing from one input channel to the next. This dissipates any voltage held by the wiring and instrument input capacitance. These relays protect sensitive devices, such as CMOS circuits, from residual voltages caused by previous high-voltage measurements. This feature can also be disabled in low-voltage applications where maximum throughput speed is important.

An optional terminal block provides screw termination points for external field wiring. This terminal block also includes cold junction compensation reference for more precise temperature measurements.

Specifications

Channel Count

Relay Type
Maximum Switching Voltage
Maximum Switching Current
Path Resistance
Insulation Resistance
Maximum Thermal Offset
Per Channel (HI-LO)
Capacitance
Open Channel $<50 \mathrm{pF}$

Channel-Mainframe $<20 \mathrm{pF}$
High-Low $<50 \mathrm{pF}$
Bandwidth (-3 dB)
Crosstalk

100 kHz	$<-55 \mathrm{~dB}$
1 MHz	$<-45 \mathrm{~dB}$
10 MHz	$<-30 \mathrm{~dB}$

Isolation

100 kHz	$<-55 \mathrm{~dB}$
1 MHz	$<-40 \mathrm{~dB}$

$10 \mathrm{MHz} \quad<-25 \mathrm{~dB}$

Rated Switch Operations
Mechanical 1×10^{7}
Electrical 5×10^{5} at full load
Switching Time $<500 \mu \mathrm{~s}$
Front Panel Connector

48 two-wire or 24 four-wire
Opto-isolated solid-state
250 V
0.2 A
$<8 \Omega$
$>1 \times 10^{9} \Omega$
$<7 \mu \mathrm{~V}$

10 MHz typical
$<-55 \mathrm{~dB}$
$<-30 \mathrm{~dB}$
$<-55 \mathrm{~dB}$
$<-25 \mathrm{~dB}$

104-pin HD D-sub

Ordering Information

EX1200-3048S
27-0389-104
27-0390-104
70-0297-001
70-0363-501
70-0367-001

48 channel 2-wire FET multiplexer
104-pin HD D-sub mating connector with hood and pins, fixed contacts (no crimp tool required)
104-pin HD D-sub mating connector, backshell and pins, crimp style
Crimp tooling, includes handle and positioner, 22 AWG
104-pin HD D-sub mating connector and backshell, with 3 ft unterminated 22 AWG wire EX1200-TB104, differential module

Instruments

EX1200-3072

72 channel 2-wire 300 V/ 2 A Multiplexer

Overview

The EX1200-3072 high-density multiplexer modules is designed for scanning of multiple points to a common bus, in either 2- or 4-wire configurations, either synchronously with the EX1200 system DMM scan function, or asynchronously as a system switch to other devices through LXI LAN messages or the hardware trigger bus. Up to 432 two-wire (or 216 four-wire) channels can be accommodated in a single EX1200 full rack mainframe for maximum density, or mixed and matched with other EX1200 plug-ins for flexibility. Applications include cable harness testing, semiconductor and PCB testing, and those in which multiple points need to be switched to a common resource. All relays also have individual control, and each path allows for hot switching of up to 300 V and 2 A ($60 \mathrm{~W} \mathrm{dc} \mathrm{max)}$.

The EX1200-3072 consists of dual (1×36) multiplexer banks. Each bank can be interconnected within a module under program control (via bussing relays) to form a (1×72) 2-wire mux. The EX1200 analog bus can be used to configure larger multiplexers as required to eliminate external wiring and helps reduce unterminated stubs effects.

Internal residual voltage discharge relays can be enabled to momentarily short out the measurement path when changing from one input channel to the next. This dissipates any voltage held by the wiring and instrument input capacitance. These relays protect sensitive devices, such as CMOS circuits, from residual voltages caused by previous high-voltage measurements. This feature can also be disabled in low-voltage applications where maximum throughput speed is important.

An optional terminal block provides screw termination points for external field wiring. This terminal block also includes cold junction compensation reference for more precise temperature measurements.

Specifications

Channel Count
Relay Type
Maximum Switching Voltage
Maximum Switching Current
Maximum Switching Power
Path Resistance
Insulation Resistance
Maximum Thermal Offset
Per Channel (HI-LO)
Capacitance
Open Channel $<50 \mathrm{pF}$
Channel-Mainframe $<20 \mathrm{pF}$
High-Low
Bandwidth (-3 dB)
Crosstalk

1 MHz	$<-70 \mathrm{~dB}$
10 MHz	$<-50 \mathrm{~dB}$
Isolation	
1 MHz	$<-55 \mathrm{~dB}$
10 MHz	$<-35 \mathrm{~dB}$

Rated Switch Operations
Mechanical
Electrical
Switching Time
Front Panel Connector
2 A
< $500 \mathrm{~m} \Omega$
$>1 \times 10^{9} \Omega$
$<3 \mu \mathrm{~V}$
$<20 \mathrm{pF}$
$<50 \mathrm{pF}$
40 MHz typical
$<-70 \mathrm{~dB}$
$<-50 \mathrm{~dB}$
$<-55 \mathrm{~dB}$
$<-35 \mathrm{~dB}$
1×10^{8} (no load)
$<3 \mathrm{~ms}$
160-pin DIN
(1×72) 2-wire, Dual (1×36) 2-wire, or $(1 \times 36) 4$-wire
Electromechanical, Fail-safe
300 V AC, 300 V DC

60 W DC, 125 VA
$1 \times 10^{5} @ 50 \mathrm{~V}$ dc, 0.1 A resistive or $10 \mathrm{~V} \mathrm{dc}, 10 \mathrm{~mA}$ (resistive)

Ordering Information

EX1200-3072
70-0363-504
70-0363-503
52-0109-000
27-0088-160
46-0010-000
46-0011-000
70-0367-002

72 channel, 300V/2 A multiplexer
Strain relief bracket kit (includes connector - recommended accessory)
Strain relief bracket kit (no connector)
Crimp pin (includes 100 crimp pins)
Mating connector (one per board)
Crimp tool (DIN)
Extraction tool (DIN)
EX1200-TB160-1, differential module

DIN connectors and tooling

Instruments

EX1200-3096

96-Channel $100 \mathrm{~V} / 1 \mathrm{~A}$ Two-Wire Multiplexer

Overview

The EX1200-3096 high-density multiplexer is designed for scanning of multiple points to a common bus, in either 2 - or 4 -wire configurations. The sequencing of switch and measure operations can be tightly synchronized as part of the EX1200 embedded scan list to minimize processor overhead and increase test throughput. Up to 576 two-wire (or 288 four-wire) channels can be accommodated in a single EX1200 full rack mainframe for maximum density, or mixed and matched with other EX1200 plug-ins for flexibility. All relays also have individual control, and each path allows for hot switching of up to 100 V and 1 A (30 W dc max).

The EX1200-3096 consists of dual (1×48) 2-wire multiplexer banks. Each bank can be interconnected within a module under program control (via bussing relays) and across modules via the EX1200 analog bus to configure larger multiplexers as required. This eliminates external wiring and helps reduce unterminated stubs.

Internal residual voltage discharge relays can be enabled to momentarily short out the measurement path when changing from one input channel to the next. This dissipates any voltage held by the wiring and instrument input capacitance. These relays protect sensitive devices, such as CMOS circuits, from residual voltages caused by previous high-voltage measurements. This feature can also be disabled in low-voltage applications where maximum throughput speed is important.

An optional terminal block provides screw termination points for external field wiring. This terminal block also includes cold junction compensation reference for more precise temperature measurements.

EX1200-3096

Specifications

Channel Count
Relay Type
Maximum Switching Voltage
Maximum Switching Current
Maximum Switching Power
Path Resistance
Insulation Resistance
Maximum Thermal Offset
Per Channel (HI-LO)
Capacitance
Open Channel $<50 \mathrm{pF}$
Channel-Mainframe $<20 \mathrm{pF}$
High-Low $<50 \mathrm{pF}$
Bandwidth (-3 dB) $\quad 10 \mathrm{MHz}$ typical
Crosstalk

1 MHz	$<-70 \mathrm{~dB}$
10 MHz	$<-50 \mathrm{~dB}$

Isolation
$1 \mathrm{MHz} \quad<-50 \mathrm{~dB}$
$10 \mathrm{MHz} \quad<-35 \mathrm{~dB}$
Rated Switch Operations
Mechanical 1×10^{7}
Electrical
Switching Time
Front Panel Connector
(1×96) 2-wire, Dual (1×48) 2-wire, or $(1 \times 48) 4$-wire
Electromechanical, Fail-safe
100 V AC, 100 V DC
1 A
30 W DC, 125 VA
< $500 \mathrm{~m} \Omega$
$>1 \times 10^{9} \Omega$
$<7 \mu \mathrm{~V}$
$<-70 \mathrm{~dB}$
$<-50 \mathrm{~dB}$
5×10^{5} at full load
$<3 \mathrm{~ms}$
200-pin HD SCSI style

Ordering Information

EX1200-3096
27-0388-200
41-0472-034
70-0367-004

96 channel 2-wire, 100 V/ 1 A multiplexer
200-pin mating connector
Strain relief bracket
EX1200-TB200, differential module

$\mathrm{VTI}-\square$

Instruments

EX1200-3164

16 (1x4) 2-wire 300 V/ 2 A Multiplexer

Overview

The EX1200-3164 high-density multiplexer module is designed to provide a flexible switching multiplexing architecture with 16 individual 1×42-wire multiplexers. Up to 961×4 two-wire channels can be accommodated in a single EX1200 full rack mainframe for maximum density, or mixed and matched with other EX1200 plug-ins for flexibility. Applications include cable harness testing, semiconductor and PCB testing, and those in which multiple points need to be switched to a common resource. All relays also have individual control, and each path allows for hot switching of up to 300 V and $2 \mathrm{~A}(60 \mathrm{~W}$ dc max).

Each bank can be interconnected within a module under program control (via bussing relays) to form larger 2-wire muxes, up to a maximum of 1×64. The EX1200 analog bus can be used to configure larger multiplexers across modules as required to eliminate external wiring and helps reduce unterminated stubs effects. The analog bus can also be routed directly to the optional EX1200 series 6.5 digit DMM for direct measurements across the backplane further reduce external wiring. Stub-breaking relays remove the module from the analog bus to minimize a module's effect on measurements being made through other modules.

An optional terminal block provides screw termination points for external field wiring. This terminal block also includes cold junction compensation reference for more precise temperature measurements.

Specifications

Channel Count

Relay Type
Maximum Switching Voltage
Maximum Switching Current
Maximum Switching Power
Path Resistance
Insulation Resistance
Maximum Thermal Offset
Per Channel (HI-LO)
Capacitance
Open Channel $<50 \mathrm{pF}$
Channel-Mainframe $<20 \mathrm{pF}$
High-Low
Bandwidth (-3 dB)
Crosstalk

1 MHz	$<-70 \mathrm{~dB}$
10 MHz	$<-50 \mathrm{~dB}$

Isolation
$1 \mathrm{MHz} \quad<-55 \mathrm{~dB}$
$10 \mathrm{MHz} \quad<-35 \mathrm{~dB}$
Rated Switch Operations
Mechanical $\quad 1 \times 10^{8}$ (no load)
Electrical $\quad 1 \times 10^{5} @ 50 \mathrm{~V} \mathrm{dc}, 0.1 \mathrm{~A}$ resistive or $10 \mathrm{~V} \mathrm{dc}, 10 \mathrm{~mA}$ (resistive)
Switching Time $<3 \mathrm{~ms}$
Front Panel Connector 160-pin DIN

Configured as either 16 (1×4), $8(1 \times 8), 4(1 \times 16), 2(1 \times 32)$ or $1(1 \times 64)$ 2-wire multiplexers
Electromechanical, Fail-safe
300 V AC, 300 V DC
2 A
60 W DC, 125 VA
< $500 \mathrm{~m} \Omega$
$>1 \times 10^{9} \Omega$
$<3 \mu \mathrm{~V}$
$<50 \mathrm{pF}$
40 MHz typical (1×4)
$<-70 \mathrm{~dB}$
$<-50 \mathrm{~dB}$
$<-55 \mathrm{~dB}$

Ordering Information

EX1200-3164
70-0363-504
70-0363-503
52-0109-000
27-0088-160
46-0010-000
46-0011-000
70-0367-008

16 (1x4) 2-wire, $300 \mathrm{~V} / 2 \mathrm{~A}$ multiplexer
Strain relief bracket kit (includes connector - recommended accessory)
Strain relief bracket kit (no connector)
Crimp pin (includes 100 crimp pins)
Mating connector (one per board)
Crimp tool (DIN)
Extraction tool (DIN)
EX1200-TB160-2, differential module

Instruments

EX1200-4003

Dual 4×16 Two-wire Matrix, $250 \mathrm{~V} / 2 \mathrm{~A}$

Overview

The EX1200-4003 high-density matrix module allow the user to connect any input row to any output column, with a DPST relay at every row/column crosspoint. This architecture provides the framework for flexible switch system designs where multiple test instruments need to be connected to common test points. For example, a digital multimeter, counter/timer and digitizers can be connected to the input rows, and each of these devices can be connected to any of the output columns depending on the measurement function that is desired during the test. The connections between rows and columns occur internal to the module which greatly reduces external cabling.

The smallest building block is a (4×16) 2-wire matrix, and rows and columns can easily be expanded to form larger matrices. A (4×192) 2-wire matrix can be accommodated in an EX1200 series full rack mainframe. The two banks of matrices can be connected under program control to further simplify field wiring.

Relays capable of switching up to 250 V and up to 2 A are used to maximize the range of application spaces that can be addressed with this module. All relays are failsafe which ensures that no undesired signals are present at the user interface in the case of power interruption.

Specifications

Relay Type
Configurations
Maximum Switching Voltage
Maximum Switching Current
Maximum Switching Power
Path Resistance
Insulation Resistance
Maximum Thermal Offset
per Channel (HI-LO)
Bandwidth (-3 dB)
Capacitance
Open Channel
Channel-Mainframe
High-Low
Crosstalk
1 MHz
10 MHz
Isolation
$1 \mathrm{MHz} \quad<-60 \mathrm{~dB}$

10 MHz
Rated Switch Operations
Mechanical
Electrical
Switching Time
Connector Type
$<-50 \mathrm{~dB}$
Electromechanical, Fail-safe
Dual $4 \times 16,8 \times 16,4 \times 32$ (programmable)
$250 \mathrm{~V} \mathrm{ac}, 250 \mathrm{~V}$ dc
2 A
$60 \mathrm{~W} \mathrm{dc}, 62.5 \mathrm{VA}$
$<500 \mathrm{~m} \Omega$
$>1 \times 10^{9} \Omega$
$<3 \mu \mathrm{~V}$
45 MHz typical (4×16)
$<50 \mathrm{pF}$
$<80 \mathrm{pF}$
$<50 \mathrm{pF}$
$<-70 \mathrm{~dB}$
$<-50 \mathrm{~dB}$
$<-60 \mathrm{~dB}$

1×10^{7}
5×10^{5} at full load
$<3 \mathrm{~ms}$
104-pin HD D-sub

Ordering Information

EX1200-4003
27-0389-104
27-0390-104
70-0297-001
70-0363-501
70-0367-001

Dual 4×16 two-wire matrix, $250 \mathrm{~V} / 2 \mathrm{~A}$
104-pin HD D-sub mating connector with hood and pins, fixed contacts (no crimp tool required)
104-pin HD D-sub mating connector, backshell and pins, crimp style
Crimp tooling, includes handle and positioner, 22 AWG
104-pin HD D-sub mating connector and backshell, with 3 ft unterminated 22 AWG wire EX1200-TB104, differential module

HD D-sub Connectors

VTI

Instruments

EX1200-4128

4×128 One-wire Matrix, $150 \mathrm{~V} / 0.5 \mathrm{~A}$

Overview

The EX1200-4128 is an ultra high-density matrix module that allows the user to connect any input row to any output column, with an SPST relay at every row/ column crosspoint. This architecture provides the framework for flexible switch system designs where multiple test instruments need to be connected to common test points. The one-wire architecture allows for any of the 128 row inputs to be connected to any of the 4 column outputs.

The four output columns can be routed to the EX1200 series internal analog backplane to build large matrices, or to connect to the optional 6.5 digit DMM, which also limits the amount of external cabling required. $A(4 \times 512)$ 1-wire matrix can be accommodated in only four slots of an EX1200 series mainframe, as an example.

Stub-breaking relays can remove a matrix module from the backplane to increase signal integrity of measurements being made on other modules. All relays are failsafe which ensures that no undesired signals are present at the user interface in the case of power interruption.

Features

4×128 1-wire configuration
High density 0.5 A relays capable of switching up to 150 V

Connect rows to internal analog bus to construct larger matrices without external cabling

Crosspoint architecture enables multiple testpoints to share instrument I/O

Stub-breaking relays increase overall system performance

EX1200-4128

Specifications

Relay Type

Configuration
Maximum Switching Voltage
Maximum Switching Current
Maximum Switching Power
Path Resistance
Insulation Resistance
Maximum Thermal Offset
per Channel (HI-LO)
Bandwidth (-3 dB), typical
Crosstalk
$1 \mathrm{MHz} \quad<-45 \mathrm{~dB}$

10 MHz
Isolation
$1 \mathrm{MHz} \quad<-60 \mathrm{~dB}$
$10 \mathrm{MHz}<-50 \mathrm{~dB}$
Rated Switch Operations
Mechanical
Electrical
Switching Time
Connector Type
$<-30 \mathrm{~dB}$

Reed

4×128 one-wire crosspoint matrix
150 V ac, 150 V dc
0.5 A

10 W dc
$<1 \Omega$
$>1 \times 10^{9} \Omega$
$<7 \mu \mathrm{~V}$
10 MHz
$<-45 \mathrm{~dB}$
1×10^{7}
5×10^{5} at full load
$<3 \mathrm{~ms}$
160-pin DIN

Ordering Information

EX1200-4128
70-0363-504
70-0363-503
70-0367-005
52-0109-000
27-0088-160
46-0010-000
46-0011-000
4×128 one-wire matrix, $150 \mathrm{~V} / 0.5 \mathrm{~A}$
Strain relief bracket kit (includes connector - recommended accessory)
Strain relief bracket kit (no connector)
EX1200-TB160SE, single-ended module
Crimp pin (includes 100 crimp pins)
Mating connector (one per board)
Crimp tool (DIN)
Extraction tool (DIN)

Instruments

EX1200-5001
80 Channel 2 A Form A (SPST) Switch
EX1200-5002
30 Channel 2 A Form C (SPDT) Switch

Features

Can be mixed and matched to create application specific configurations

Ideal for general purpose switching of up to 300 V (AC/DC) or 2 As

Can be used to switch a common point to either power or ground (Form C)

Connect together using external wiring for flexible switch design

Easy to use configuration software facilitates end-end path level switching for simplified programming

Overview

The EX1200-5001 and -5002 are high-density general purpose 2 A switch modules designed for systems where individual relays can be used to route signals to/from the units under test (UUT), or combined externally to form user-defined configurations. These relays are commonly used to create complex signal distribution networks that can be reconfigured through different wiring in test adapters. For example, three relays on a -5002 module can be configured as a SP4T tree, and seven relays can be configured as a SP8T tree. Up to 180 individual SPDT or 480 SPST relays can be accommodated in a full rack mainframe for maximum density. The modules can also be configured with other EX1200 series switch modules as part of a flexible system switch design.

Since these modules may be used to switch power to the UUT or interface, the digital input lines on the EX1200 series mainframes support the ability to force all relays automatically to their normally open state if a fault condition occurs. This approach instantly removes all power to the UUT or interface. These modules can be automatically configured in the setup phase at the beginning of each scan step to facilitate test sequencing and control.

EX1200-5001

EX1200-5002

Specifications

Channel Count
Maximum Switching Voltage
Maximum Switching Current
Maximum Switching Power
Path Resistance
Insulation Resistance
Maximum Thermal Offset
per Channel (HI-LO)
Capacitance
Open Channel $<50 \mathrm{pF}$
Channel-Mainframe $<80 \mathrm{pF}$
High-Low
Bandwidth (-3 dB)
Crosstalk

100 kHz	$<-80 \mathrm{~dB}$
1 MHz	$<-60 \mathrm{~dB}$

Isolation
100 kHz
1 MHz
Rated Switch Operations
Mechanical
Electrical
Switching Time
Connector Type

```
30 SPDT (5002), 80 SPST (5001)
300 V AC, 300 V DC
2 A
60 W DC, 125 VA
< 300 m\Omega
> 1\times10}\mp@subsup{0}{}{9}
< 7 |V
< 50 pF
30 MHz typical (-5002), 10 MHZ typical (-5001)
<-80 dB
<-60 dB
<-50 dB
<-45 dB
1\times108 (no load)
1\times105@ @ V dc, 0.1 A resistive or 10 V dc, 10 mA (resistive)
< 3 ms
160-pin DIN (Form A modules)
104-pin HD D-sub (Form C modules)
```


Ordering Information

EX1200-5001
EX1200-5002
EX1200-5006
EX1200-5007
27-0389-104
27-0390-104
70-0297-001
70-0363-501
70-0367-003
70-0367-005
70-0363-504
70-0363-503
52-0109-000
46-0010-000
46-0011-000
27-0088-160

80 Channel 300 V/2 A SPST switch
30 Channel 300 V/2 A SPDT switch
40 Channel 300 V/2 A SPST switch
12 Channel 300 V/2 A SPDT switch
104-pin HD D-sub mating connector with hood and pins, fixed contacts (no crimp tool required)
104-pin HD D-sub mating connector, backshell and pins, crimp style
Crimp tooling, includes handle and positioner, 22 AWG
104-pin HD D-sub mating connector and backshell, with 3 ft unterminated 22 AWG wire
EX1200-TB104SE, single-ended module for EX1200-5002
EX1200-TB160SE, single-ended module for EX1200-5001
Strain relief bracket kit (includes connector - recommended accessory)
Strain relief bracket kit (no connector)
Crimp pin (includes 100 crimp pins)
Crimp tool (DIN)
Extraction tool (DIN)
Mating connector

HD D-sub Connectors

VTI $-{ }^{\square}$

Instruments

EX1200-6101
 (10) SP4T 50Ω RF Multiplexers, 1.3 GHz

Overview

The EX1200-6101 and -6111 are high-density RF switch modules with either five or ten individual SP4T coaxial trees that are isolated from each other and system ground to provide a high-fidelity switch path for switching signals in excess of 1.3 GHz in a 50 ohm environment. On-board jumpers can be added to connect all shields together or to system ground if desired. Excellent crosstalk and isolation is maintained by using very short low-loss coaxial runs from the connector directly to the relays.

All modules are also configured to avoid any unterminated stub effects. This improves overall signal integrity and allows for high frequency matrix designs or large multiplexer configurations while preserving bandwidth and maintaining low VSWR. The front panel utilizes two high-density, 26-pin coaxial connectors designed for high reliability and low insertion loss.

Six of the modules can be accommodated in a single EX1200 full rack mainframe to provide a very flexible RF switch network. For example, a single -6101 module can be configured through external cabling to provide dual 1×16 multiplexers into two channels of a scope, or as a single 4×4 RF matrix. The modules can also be combined with other EX1200 switch cards to configure a general purpose subsystem to switch DC to $>1.3 \mathrm{GHz}$.

Specifications

Relay Type

Maximum Switching Voltage
Maximum Switching Current
Maximum Switching Power
Path Resistance
Insulation Resistance
Bandwidth (-3 dB)
Insertion Loss
500 MHz
1.3 GHz

Crosstalk
500 MHz
1.3 GHz

Isolation
500 MHz
1.3 GHz
vSWR
100 MHz
1.3 GHz

Rated Switch Operations
Mechanical
Electrical
Switching Time
Connector Type
$<-60 \mathrm{~dB}$
$<-55 \mathrm{~dB}$
$<-65 \mathrm{~dB}$
$<-55 \mathrm{~dB}$
< 1.2:1
< 1.5:1
5×10^{6}
1×10^{5} at full load
Electromechanical, Fail-safe
100 V DC/100 V AC
0.5 A

10 W
$<1 \Omega$
$>1 \times 10^{9} \Omega$
1.3 GHz typical
$<0.5 \mathrm{~dB}$
$<3.0 \mathrm{~dB}$
淢
$<-55 \mathrm{~dB}$
$<5 \mathrm{~ms}$
Dual 26-pin A

Ordering Information

EX1200-6101
EX1200-6111
70-0150-000
70-0149-000
70-0149-001
46-0018-000
46-0018-001
46-0018-002
46-0021-000
(10) SP4T RF multiplexers, 1.3 GHz
(5) SP4T RF multiplexers, 1.3 GHz

26-pin connector and housing (2 required)
10-pin/Ferrule kit (RG316 50 Ohm)
10-pin/Ferrule kit (RG178 50 Ohm)
Crimp tool, coax (RG316 50 Ohm)
Crimp tool, coax (RG178 50 Ohm)
Crimp tool, coax (RG179 75 Ohm)
Tool, pin extractor, size 16 contact, A M series

26-pin connectors and tooling

VTI

Instruments

EX1200-6216

Dual (1x16) 50 W RF Multiplexers, 1 GHz

Overview

The EX1200-6216 is a high-density RF switch module configured as dual 1×16 coaxial trees that are isolated from each other and system ground to provide a high-fidelity switch path for switching signals in excess of 1 GHz in a 50 ohm environment. On-board jumpers can be added to connect all shields together or to system ground if desired. Excellent crosstalk and isolation is maintained by using very short low-loss coaxial runs from the connector directly to the relays.

All modules are also configured to avoid any unterminated stub effects. This improves overall signal integrity and allows for high frequency matrix designs or large multiplexer configurations while preserving bandwidth and maintaining low VSWR. The front panel utilizes two high-density, 26-pin coaxial connectors designed for high reliability and low insertion loss.

Six of the modules can be accommodated in a single EX1200 full rack mainframe to provide a very flexible RF switch network. The modules can also be combined with other EX1200 switch cards to configure a general purpose subsystem to switch DC to $>1 \mathrm{GHz}$

Specifications

Relay Type

Maximum Switching Voltage
Maximum Switching Current
Maximum Switching Power
Path Resistance
Insulation Resistance
Bandwidth (-3 dB) typical
Insertion Loss
100 MHz
900 MHz
Crosstalk
$100 \mathrm{MHz}<-60 \mathrm{~dB}$
$900 \mathrm{MHz}<-55 \mathrm{~dB}$
Isolation
100 MHz
900 MHz
vSWR
100 MHz
$900 \mathrm{MHz}<1.5: 1$
Rated Switch Operations
Mechanical 5×10^{6}
Electrical
Switching Time $<5 \mathrm{~ms}$
Connector Type Dual 26-pin A
$<0.5 \mathrm{~dB}$
$<3.0 \mathrm{~dB}$
$<-65 \mathrm{~dB}$
$<-55 \mathrm{~dB}$
< 1.2:1
Electromechanical, Fail-safe
100 V DC/100 V AC
0.5 A

10 W
$<1 \Omega$
$>1 \times 10^{9} \Omega$
1 GHz
1×10^{5} at full load

Ordering Information

EX1200-6216
70-0150-000
70-0149-000
70-0149-001
46-0018-000
46-0018-001
46-0018-002
46-0021-000

Dual (1×16) RF multiplexers, 1 GHz
26-pin connector and housing (2 required)
10-pin/Ferrule kit (RG316 50 Ohm)
10-pin/Ferrule kit (RG178 50 Ohm)
Crimp tool, coax (RG316 50 Ohm)
Crimp tool, coax (RG178 50 Ohm)
Crimp tool, coax (RG179 75 Ohm)
Tool, pin extractor, size 16 contact, A M series

26-pin connectors and tooling

VTI

Instruments

EX1200-6301
 (4) SP4T 50 W RF Multiplexers, 3 GHz

Overview

The EX1200-6301 is designed with SMB male connectors for applications that require RF signal switching greater than 3 GHz in a 50 W environment. Excellent crosstalk and isolation performance is achieved by using short low-loss coaxial runs from the connector directly to the relays. All modules are designed to avoid any unterminated stub effects improving overall signal integrity and enabling the construction of larger high frequency multiplexer configurations while maintaining bandwidth and VSWR.

Six of the modules can be accommodated in a single EX1200 full rack mainframe or combined with other switch modules to create a flexible switching configuration that can cover a wide range of applications.

Features

Up to (4) SP4T RF multiplexer trees,
$>3 \mathrm{GHz}$ bandwidth
Suitable for switching RF signals to/from
high bandwidth measurement devices such as oscilloscopes and function generators

10 W maximum switching power

50 ohm on-board self-termination option
SMB male connectors for high performance

No unterminated stub effects

EX1200-6301

EX1200-6301

Specifications

Relay Type

Maximum Switching Voltage
Maximum Switching Current
Maximum Switching Power
Path Resistance
Insulation Resistance
Bandwidth (-3 dB)
Insertion Loss
1 GHz
3 GHz
Crosstalk
$1 \mathrm{GHz}<-60 \mathrm{~dB}$
3 GHz
Isolation
1 GHz
3 GHz
vSWR
1 GHz
3 GHz
Rated Switch Operations
Mechanical
Electrical
Switching Time
Connector Type
$<-55 \mathrm{~dB}$
$<-65 \mathrm{~dB}$
$<-55 \mathrm{~dB}$
< 1.2:1
< $1.5: 1$
5×10^{6}
1×10^{5} at full load
Electromechanical, Fail-safe
30 V DC/30 V AC
0.5 A

10 W
$<1 \Omega$
$>1 \times 10^{9} \Omega$
3 GHz
$<0.5 \mathrm{~dB}$
$<3.0 \mathrm{~dB}$
<-55 dB
< 5 ms
SMB (Qty 20)

Ordering Information

(4) SP4T 50 W RF multiplexers, 3 GHz

EX1200-6301T
(4) SP4T 50 W self-terminated RF multiplexers, 1.5 GHz

Instruments

EX1200-7500

64 Channel 2 MHz Digital Input/Output

Overview

The EX1200-7500 is a high-performance I/O module with eight ports of 8 bits (64 channels). Each 8-bit port may be configured as an input or output under program control. The I/O may be either single buffered to provide real time data access or double buffered to provide synchronized data. As part of the EX1200 series, up to 384 channels can be accommodated in a full rack mainframe, or combined with other plug-ins to configure a measure and control subsystem.

The EX1200-7500 has the flexibility to source the input and output clocks from the front panel, allowing very large numbers of channels to be synchronized to collect or present data to a UUT. Additionally, input data can be timestamped to IEEE-1588 precision as part of the EX1200 scan engine. Deep on-board memory (up to 1 MB) can be used to generate patterns on output channels at rates up to 2 MHz . In order to ease overall system cabling, all clamping diodes and open collector channels can be pulled up internally, rather than on a per-channel basis.

Features

Eight ports of 8 I/O bits each
High current capability for control of external relays, 300 mA sink

Simulate and receive digital data at up to 2 MHz sample rates

Selectable output voltages range from 3.3 V to 60 V

Setup outputs and scan inputs as part of EX1200 measurement sequencing engine

Specifications

Data Input Characteristics
Vin (high)
Vin (low)
Vin (max)
Data Output Characteristics
Vout (high)
Vout (low)

Modes

Gate (Pattern Mode)

Channel Configuration
(Pattern Mode)
Memory Depth
Data Throughput
Data Input Clock Sources
Maximum External Clock Rate
$>40 \%$ of Vcc
$<16 \%$ of Vcc
60 V
$>2 \mathrm{~V}-60 \mathrm{~V}$
$<1.5 \mathrm{~V} @ 300 \mathrm{~mA}$

Immediate : Input channels are read as part of the EX1200 scan list, outputs are updated under software control
Asynchronous: Channels are latched into memory via external clock
Pattern : Buffered pattern generation and acquisition

Programmable active low or high

32 inputs, 32 outputs
256 kB patterns for input, 256 kB for output
Programmable to 10 MHz
Internal clock, Front panel input
2 MHz

Ordering Information

EX1200-7500
70-0363-504
70-0363-503
27-0088-160
52-0109-000
46-0010-000
46-0011-000
70-0367-005

64 channel 2 MHz digital input/output
Strain relief bracket kit (includes connector - recommended accessory)
Strain relief bracket kit (no connector)
Mating connector
100 Crimp pins
Crimp tool
Extraction tool
EX1200-TB160SE, single-ended module

DIN connectors and tooling

Instruments

EX1200-3608

8 channel DAC/400 kHz AWG

EX1200-3604
4 channel DAC/400 kHz AWG

Features

4 or 8 independent 16-bit D/A converters per instrument

Ideal for simulating thermocouples and other sensor outputs
$\pm 20 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 1 \mathrm{~V} \pm 0.1 \mathrm{~V}$ output ranges
$400 \mathrm{kSa} / \mathrm{s}$ arbitrary waveform generation with internal programmable clock

Extensive triggering capability

Synchronize level changes with input measurements to facilitate test sequencing

Overview

The EX1200-3608 and EX1200-3604 provide eight or four independent channels of a digital to analog converter (DAC) with 16 bits of resolution. Each channel consists of 12-bit and 16-bit independent DACs combined with an output Alifier. The two DACs allow these modules to achieve fine resolution at very low output range settings. Along with static output operation, the DAC modules provide an arbitrary waveform generation mode (AWG) which supports sophisticated looping and branching to build complex waveforms without the system controller's intervention. The data may be paced out of the instrument by using either a user-supplied clock or the internal programmable timer with output rates up to $400 \mathrm{kSa} / \mathrm{s}$.

Each channel is true-differential, and has sense lines that can be used to compensate for voltage drops that occur over the length of the lead wire between the DAC output and the device under test. Channels can be connected in series to produce outputs in excess of 20 V . An external clock input is available to synchronize output level changes with external events. When used in an EX1200 series mainframe with the optional DMM, the DAC outputs can be routed to the internal analog backplane for verification prior to critical test runs to ensure the device will perform to a high degree of accuracy.

The EX1200-3608 channels are isolated in groups of two, while all four of the channels on the EX1200-3604 are individually isolated. This provides the ability to connect four channels together in series to create an output channel with an extended range to 80 V .

When using the EX1200 scanning measurement feature, the DAC levels can be programmed at the beginning of each scan step. This powerful feature provides the basis for test sequencing completely independent of the host controller, where analog outputs are synchronized with measurement inputs.

Specifications

Output Ranges (Voltage)
Output Range (Current)
Output Current (Voltage Mode)
Resolution
Isolation
Slew Rate
Settling Time
DCV Accuracy
Update Rate
Trigger Sources
Memory
Remote Sense Lines
AWG Memory
AWG Data Traces
AWG Segments
AWG Loop Count
AWG Advance

AWG Advance Conditions
AWG Marker Function
AWG Marker Output
User Connector
$\pm 0.1 \mathrm{~V}, \pm 1 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 20 \mathrm{~V}$
$\pm 20 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$ per channel into short circuit
16 bits, 16 bits monotonic
100 V
$20 \mathrm{~V} / \mathrm{\mu s}(50 \mathrm{~mA}$ load)
10μ s to 0.1% of specified value
(0.01% of Setting $+0.0076 \%$ of Range +0.1 mV)
Programmable, maximum $400 \mathrm{kSa} / \mathrm{s}$
Front panel input, LXISync
1 MSample
Per channel
484 kwords divided by the number of active channels. 996 kword optional.
1 to 4096 unique patterns
1 to 4096
1 to 1048575 or continuous
Synchronous waits for the end of Modes the current pattern to advance to the next.
Asynchronous advances immediately to the next pattern upon being triggered.
Automatic or triggered
Marks the first data in a pattern when enabled. Polarity is software programmable.
Front panel TTL compatible output.
44-pin HD D-sub

Ordering Information

EX1200-3608
EX1200-3604
27-0390-044
70-0363-502
70-0297-001

8-channel DAC/AWG $400 \mathrm{kSa} / \mathrm{s}$
4-channel DAC/AWG $400 \mathrm{kSa} / \mathrm{s}$
44-pin HD D-sub mating connector, backshell and pins, crimp style
44-pin HD D-sub mating connector and backshell, with 3ft unterminated 22 AWG wire Crimp tooling, includes handle and positioner, 22 AWG

HD D-sub Connectors

Instruments

EX1200-7416

16 Channel Comparator/Event Detector

Up to 96 differential channels per full rack mainframe

Constantly monitor input signals for fault conditions

Flexible configurations for detecting edges, out-of-bounds conditions and measuring pulse widths

Inputs can be masked, inverted and combined to produce interrupts

Programmable debounce circuitry prevents erroneous readings
$\pm 10 \mathrm{~V}$ and $\pm 100 \mathrm{~V}$ input ranges
On-board memory stores events with IEEE 1588 timestamps

Synchronize reading of input states with other scanned analog channels

Overview

The EX1266-7416 has 16 true differential channels of analog comparator input, that can be selected to provide an interrupt to the EX1200 system, when the input falls outside the software programmed bounds, independent of the scan list operation. The EX1200-7416 is an ideal device in go/no-go testing where a device fails if the voltage outputs exceed a threshold or window, or even in control applications if a device or test needs to be shut down if a voltage level is exceeded. Using an analog comparator/interrupter in certain applications, as opposed to a traditional scanning approach of the EX1200 series considerably improves the overall response time of the system, providing the ability to 'constantly monitor' signals of interest for fault conditions.

The inputs are independently software programmable, permitting the user to vary input thresholds per channel. Each input signal is also digitally debounced for a programmed time ranging from 1μ s to 500 ms , preventing input signal noise from causing undesired interrupts. The threshold polarity can be programmed to detect either a rising or falling edge or can be masked to prevent unused channels from causing interrupts.

All of the enabled inputs are OR'd together to produce a single interrupt signal. Input can be combined via math functions to create virtual channels when multiple conditions must be satisfied before an event is recorded. On-board memory stores events with precise IEEE-1588 timestamps. The interrupt signal can be routed through the front panel connector for distribution to other devices in the test system for absolute deterministic communication.

There are three modes of operation that satisfy a wide range of applications. In normal mode, any channel crossing a threshold with the programmed polarity will cause an event to be latched into memory. Window mode automatically parallels two adjacent input channels and is used when an input signal is expected to be within upper and lower bounds. The pulse mode provides a means for measuring the pulse width of input signals by automatically changing the threshold polarity at each crossing.

The EX1200-7416, as part of the EX1200 family of switching and I/O, can be combined with up to five other modules and a DMM to form a high-density test subsystem in a 1 U footrpint.

Specifications

Number of Channels
Input Ranges
Input Threshold

Input Type
Input Impedance

Input Polarity
Modes

Debounce Time
Memory
Timestamp
Math Functions
Input Impedance
Connector

16 differential or SE
$\pm 10 \mathrm{~V}, \pm 100 \mathrm{~V}$, (Special ranges available)
$\pm 10 \mathrm{~V}$ range with 78 mV resolution (8-bit), per channel
$\pm 100 \mathrm{~V}$ range with 780 mV resolution (8-bit), per channel
Differential, may be configured for single-ended by grounding the negative input.
$200 \mathrm{k} \Omega$ differential
$100 \mathrm{k} \Omega$ single-ended
Rising or falling edge, per channel
Normal (Edge Detect)
Window (upper/lower bounds)
Pulse (Positive/Negative Polarity)
$1 \mu \mathrm{~s}$ to 500 ms
128k events
IEEE-1588
AND/OR
> 1 MOhm
44-pin HD D-sub

Ordering Information

EX1200-7416
27-0390-044
70-0363-502
70-0297-001

16 channel comparator/event detector
44-pin HD D-sub mating connector, backshell and pins, crimp style
44-pin HD D-sub mating connector and backshell, with 3ft unterminated 22 AWG wire
Crimp tooling, includes handle and positioner, 22 AWG

HD D-sub Connectors

About VTI Instruments, Inc.

VTI Instruments is the market leader in functional test and data acquisition systems. ISO9001:2000 registered, the company serves the aerospace/defense, avionics, transportation and power and energy markets. The company engineers and produces over 200 components and subsystems to build both custom and standard test systems. With offices in the U.S., Europe and Asia, worldwide product support is provided through a network of VTI-certified engineering representatives. VTI is a sponsor member of the VXI Consortium and a strategic/ founding member of the LXI Consortium.

For more information visit www.vtiinstruments.com or email sales@vtiinstruments.com.

VTI Instruments Corporation - World Headquarters, USA
Tel: +1 9499551894

VTI Instruments Corporation, Europe
Tel: +44 1295660008

VTI Instruments Corporation, Asia
Tel: +91 8040407900

[^0]: *Contact factory for latest module releases. All information and specifications subject to change without notice.

[^1]: *Slow and medium filter settings ignore line frequency, integration time, and auto-zero settings.

[^2]: 5 banana jacks

