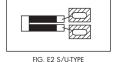


When compared to conventional metallic wire and foil gages, Kulite semiconductor gages offer some significant advantages:

- Higher Sensitivity
- Smaller Sizes
- Higher Resistance
- · Higher Fatigue Life
- Lower Hysteresis
- · Lower Non-linearity
- Increased Temperature Envelope

The semiconductor strain gage may be thought of as a strain sensitive resistor. Generally when bonded to a stressed member, its resistance changes as a function of applied strain. This characteristic makes it useful in the fields of stress analysis, physical measurements, testing, transducer and instrumentation manufacture. Additionally, the latest Silicon-On-Insulator (SOI) technology enables the fabrication of the high temperature strain gages with enhanced performance characteristics. These gages, as well as all other silicon based strain gages, are easily optimized for specific customer applications and have been found by customers to be truly superior to their foil gage counterparts.


For further information, please download our Strain Gage Manual.

GAGE TYPES

GW EW

GAGE GEOMETRY

STRAIN GAGE CHARACTERISTICS AND SELECTION TABLE

GAGE DOPING CODE	GAGE CHARACTERISTICS		PART NUMBER	FIGURE	(GL) EFFECTIVE LENGTH ±5%	(GW) GAGE WIDTH ±5%	(EL) (EW) ENCAPSULATION	
							LENGTH ±10%	WIDTH ±10%
С	G.F. TCR TCGF Linearity	+ 100 + 4% - 6% ± 0.2%	ACP-15-150 ACP-30-150 ACP-120-300 UCP-120-090 S/ACP-120-300 S/UCP-120-090	B1 B1 B1 B2 E1 E2	.100 .100 .250 .060 .250	.020 .010 .009 .020 .009	.500 .280	.210 .140
D	G.F. TCR TCGF Linearity	+ 115 + 3% - 8% + 0.2%	ADP-250-220 ADP-350-300 UDP-350-175 S/ADP-350-300 S/UDP-350-175	B1 B1 B2 E1 E2	.186 .250 .140 .250 .140	.009 .010 .016 .010	.500 .350	.210 .140
E	G.F. TCR TCGF Linearity	+ 130 + 6% - 10% ± 0.2%	AEP-350-220 AEP-500-300 UEP-350-060 UEP-350-090 S/AEP-500-300 S/UEP-350-090	B1 B1 B2 B2 E1 E1	.170 .250 .030 .060 .250	.009 .010 .020 .020 .010	.500 .280	.210 .140
F	G.F. TCR TCGF Linearity	+ 140 + 10% - 11% ± 0.2%	AFP-500-090 AFP-350-090 UFP-750-090 S/AFP-500-090 S/UFP-750-090	B1 B1 B2 E1 E2	.060 .060 .060 .060	.010 .010 .020 .010 .020	.280 .280	.140 .140
G	G.F. TCR TCGF Linearity	+ 155 + 18% - 13% ± 0.2%	AGP-350-090 AGP-500-090 AGP-1000-300 UGP-1000-060 UGP-1000-090 S/AGP-1000-300 S/UGP-1000-090	B1 B1 B1 B2 B2 E1 E2	.060 .060 .250 .030 .065 .250	.010 .010 .010 .020 .020 .010	.500 .280	.210 .140
н	G.F. TCR TCGF Linearity	+ 175 + 45% - 23% ± 0.2%	AHP-10000-220 AHP-10000-300 UHP-5000-060 S/AHP-10000-220 S/AHP-10000-300 S/UHP-5000-060	B1 B1 B2 E1 E1	.170 .250 .030 .170 .250	.009 .009 .020 .009 .009	.250 .500 .250	.150 .210 .140

Nominal Gage Resistance (Ω) Indicated in Red